Return the maximum of an array along axis 0 or maximum ignoring any NaNs in Python
To return the maximum of an array along axis 0 in Python, we can use the numpy.amax()
function. Here's an example:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
max_arr = np.amax(arr, axis=0)
print(max_arr)
Output:
[7 8 9]
Here, we first import the numpy
library and create a 2D array arr
. We then use the numpy.amax()
function to find the maximum value along axis 0 (i.e., column-wise). The resulting array max_arr
contains the maximum value of each column.
To return the maximum ignoring any NaNs in Python, we can use the numpy.nanmax()
function. Here's an example:
import numpy as np
arr = np.array([1, 2, np.nan, 4, 5])
max_arr = np.nanmax(arr)
print(max_arr)
Output:
5.0
Here, we first import the numpy
library and create a 1D array arr
with a NaN value. We then use the numpy.nanmax()
function to find the maximum value ignoring any NaNs. The resulting value max_arr
is 5.0, which is the maximum value in the array after ignoring the NaN value.